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Non-perturbative tricritical exponents of trails: 11. Exact 
enumerations on square and simple cubic lattices 

A Guhat,  H A LimS and Y Shapir 
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA 

Received 4 September 1987 

Abstract. We present exact enumerations of trails (self-intersecting but non-overlapping 
lattice walks) tabulated according to their length (I) ,  number of intersection (I)  and 
end-to-end distance for the square lattice (up to I = 21, I = 7) and for the simple cubic 
lattice (up to I = 15, I = 5 ) .  We introduce a fugacity for intersection to explore the transition 
to a collapsed phase through a novel tricritical point which is unaccessible by the renormali- 
sation group approach. The existence of tricritical points in both lattices is manifested by 
the divergence of the specific heat. The values of the tricritical couplings and exponents 
are extracted by a DlogPad6 analysis. We find for the three-dimensional lattice U, = 0.48 
and yt = 0.43 (U, = 0.52 and y, = 1.25 for the square lattice). 

1. Introduction and motivation 

Trails are self-intersecting, yet self-avoiding, lattice walks. They may cross through an 
already visited site but cannot go on any bond more than once. Their configurations 
thus provide a non-trivial interpolation between two of the most important problems 
in statistical mechanics: the free random walk (RW) and the self-avoiding walk (SAW). 

Malakis [ 11 and Guttman [2] have investigated the long-distance properties of trails 
by exact enumerations. These results showed that trails share the scaling behaviour 
of SAW [1,2]. In the language of critical phenomena [3], allowing for site self- 
intersections is an 'irrelevant' perturbation and the trail model belongs to the SAW 

universality class described by the O( n) (or O ( 2 n ) )  spin model in the limit n + 0. This 
result was confirmed by a renormalisation group analysis near d = 4  [4]. This study 
was based on a Hamiltonian formulation for the trails generating a functional in terms 
of n interacting ( n  + 0) X Y  spins. The continuum version of that Hamiltonian is 

%'[+'"(x), c$"(x)] = + ' " ( x ) + " ( x ) + ~ ~  V+"(x) * V + u ( x )  
0 

Higher-order terms are irrelevant and may be discarded. This theory may be viewed 
as a O(2n) spin model with an additional term due to the intersections and which 
breaks the symmetry to 0 ( 2 ) 0 P n ( P n  is the permutation group of n objects). Field 

t Present address: AT&T Bell Laboratories, 480 Red Hill Road, Middletown, NJ 07748, USA. 
$ Present address: Supercomputer Computations Research Institute, Tallahassee, FL 32306-4052, USA. 
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theories for generalised interacting walks in which the O ( 2 n )  symmetry is unbroken 
were derived by Jasnow and Fisher [ 5 ] .  The same Hamiltonian with negative g and 
U has attracted much attention because it describes the random X Y  model (for a 
review, see [6]). In this case, it is known that the randomness (proportional to g) is 
irrelevant (the specific heat exponent of the pure X Y  model is positive [7]). The 
question of whether a random fixed point exists for stronger randomness is as yet 
unanswered. Below we demonstrate the non-perturbative appearance of a closely 
related fixed point. 

The number of intersections in the trail configurations may be controlled by adding 
a conjugate fugacity: we associate with each intersection a factor f =  e' where 8 = PE 
and E is the chemical potential for the formation of crossing. In the limit 8 + -CO, the 
regular SAW model is recovered; 8 = 0 are the regular trails and for 8 +CO, we expect 
the compact configurations (with the maximal number of crossings) to dominate. The 
transition from one regime to the other is expected to be described by a tricritical point 
similar to the 0 point in polymers [3] which is driven in the SAW model by an 
unrestricted monomer-monomer attraction. In the continuum version, the effect of 
increasing the fugacity is to increase the absolute value of the (negative) ratio lu/g). 
So the tricriticality in trails is crucially different from that of the 0 point which occurs 
in SAW ( U  = 0) when the renormalised vertex g (renormalised osmotic pressure) vanishes 
and the (42)3 term is controlling the behaviour near the upper critical dimension 
( d , = 3 )  [ 3 ] .  The trail configurations at their tricritical point are expected to be 
non-Gaussian ( Y # 4) in 3 ~ .  However, no perturbative fixed point associated with this 
tricritical transition may be found by the RG approach and the E expansion. Instead, 
the RG result shows the SAW fixed point to remain the only stable fixed point and its 
basin of attraction includes all the quadrant U > 0, g > 0. Since a tricritical point is 
always expected between a swollen phase (analogous to a second-order critical point) 
and a collapsed one (the transition to which is first order in the magnetic terminology), 
an intriguing puzzle remains to be resolved. 

In the first paper of this series [SI (herafter referred to as I), we have presented 
exact enumeration results on a triangular lattice in which the existence of a trail 
tricriticality was exhibited for the first time. In the present paper, we report results 
from exact enumerations on square and cubic lattices that unequivocally demonstrate 
the presence of such a tricritical point in two and three dimensions. 

The paper is organised as follows: in § 2 we explain the enumeration and present 
extensive tables of coefficients (up to length f = 21 and 1 = 15 for the square and the 
cubic lattices respectively). In § 3, the specific heat computations are presented and 
the location of the tricritical point is found. Section 4 is devoted to the DlogPadC 
analysis which we use in order to calculate the approximate values of the scaling 
exponents at this tricritical point. Section 5 is devoted to a comparison of results on 
square and triangular (presented in I) latttices and to further conclusions and inferences. 

2. Definitions and tabulation of the series 

For each one of the lattices, we have enumerated two series: 

spacing) and I intersections; 

I ,  I intersections and end-to-end distance r (in units of lattice spacing). 

(a) c ( f ,  I)-the total number of trails of length f (measured in units of lattice 

(b) d ( f ,  I) = Z , r 2 n ( l ,  I, r )  where n ( f ,  I, r )  is the total number of trails with length 
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Table 1. The coefficients c ( / ,  I )  for the square lattice. 

accr, 1 )  

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 

1 
3 
9 

25 
71 

195 
543 

1479 
4 067 

11 025 

30 073 
81 233 

220 375 
593 61 1 

1 604 149 

4311 333 
11 616 669 
31 164 683 
83 779 155 

224 424 291 
602 201 507 

2 
8 

34 
108 
368 

1108 
3 476 

10 256 
30 760 
89 404 

261 408 
750 432 

2 159 144 
6 137 576 

17 459 552 
49 246 860 

138 898 496 
389 333 868 

6 
28 

142 
490 

1832 
6 034 

19 838 
63 336 

197 284 

610 750 
1851 152 
5 594 876 

16 652 694 
49 464 764 

145 236 226 

32 

112 
704 

2 512 
9 800 

34 496 

117 168 
390 384 

1 265 072 
4 033 296 

12 697 576 
39 376 848 

168 
656 

3 548 

14 660 1 008 
54 800 4 480 

205560 21600 608 
714 140 90080 4 768 

2448052 354256 33472 
8 158268 1283168 140336 6 400 

Tables 1 and 2 present c( l ,  I )  and d ( l ,  I )  respectively for the square lattice up to 
f = 21 and I = 7 .  Tables 3 and 4 present the same series for the cubic lattice up to 
1 = 1 5  and 1 = 5 .  

Using the coefficients c( I ,  I ) ,  we construct the series 

u,(e)=C c ( f ,  I )  ele 
I 

With this series and the coefficients d(f, I ) ,  we generate the series for the average 
end-to-end distance squared: 

3. Evaluation of the specific heat 

Rapaport [9] first suggested (in his paper on the 0 point) to use the divergence of the 
specific heat in order to locate the tricritical point. In I we have improved the method 
by using a linear extrapolation to obtain a better estimate for the asymptotic value. 
We believe this method to be more accurate (although, as explained below, it is not 
as useful for the cubic lattices due to the oscillatory behaviour of the series). The 
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Table 2. The coefficients d ( l ,  I )  for the square lattice. 

I l  I 0 

1 1 
2 8 
3 41 
4 176 
5 679 

6 2 452 
7 8 447 
8 28 120 
9 91 147 

10 289 324 

11 902 721 
12 2777112 
13 8 441 319 
14 25 398 500 
15 75 744 301 

16 224156984 
17 658855781 

1 2 3 4 5 6 7 

8 

72 
428 

2 096 
9 076 

36 376 

137 584 
498 672 

1 747 548 
5 960 600 

19 883 648 

65 103 472 

6 
48 

382 
2 112 

10 696 
47 808 

200 366 
792 264 

3 002 084 

0 987 072 

64 

368 
2 624 

13 328 520 
65 600 2 720 

293 184 18556 

235520 92064 3 712 
209 810 184 39 086 656 4 972 464 439 888 19 840 

18 1924932324 667001240 135769448 19208512 1952208 129408 1216 
19 5 593 580 859 2 095 392 460 462 261 110 71 873 296 8 214 588 647 520 29 664 
20 16175728584 6514417216 1546710112 261680128 33134016 3072064 169600 
21 46572304083 20066513388 5098302274930790672 129198908 13558368 999920 19712 

Table 3. The coefficients c(1, I )  for the simple cubic lattice. 

k(l, I )  

I j I  0 1 2 3 4 5 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

1 
5 

25 
121 
589 

2 821 
13 565 
64 661 

308 98 1 
1468 313 

6 989 025 
33 140 457 

157 329 085 
744 818 613 

3 529 191 009 

4 
32 

252 
1560 
9 568 

54 200 
304 296 

1 646 976 
8 846 760 

46 562 408 
243 535 400 

1257654960 

36 
424 

3 756 
28 204 688 

189 272 7 968 
1 210 068 80 168 704 
7 309 076 624 560 17 368 

43 202 968 4 599 072 215 488 528 
246915 152 30675 504 2059336 27 808 
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Table 4. The coefficients d(1, I )  for the simple cubic lattice. 

If I 0 1 2 3 4 5 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

1 
12 
97 

672 
4 261 

25 588 
147 821 
830 576 

4 566 91 7 
24 692 980 

131 682 825 
694 386 864 

3626770709 
18790632772 
96675376705 

32 

496 
5 208 

44 480 
337 656 

2 364 400 

15 641 408 
99 095 520 

607 193 704 
3621647024 

21132370416 

36 
672 

9 260 
96 064 896 

866 392 17 184 
6 984 416 227 200 1408 

52 289 524 2 386 608 42 008 
368 873 520 21 791 488 623 552 2 112 

2488974096 180777264 7451336 68 512 

specific heat is defined as follows: 

1 a’ 
I ae h,( e)  = -2 iogu,( e)  = (z( e)*)  - (z(  e))’ (4) 

namely it measures the relative fluctuations in the number of intersections. Since no 
other singular point is expected, the value of 0 for which the h,(O) diverge is a clear 
signature of the tricritical point. The maxima of h , (8 ) ,  denoted by e,,,(l), do not fall 
on the same point but rather show a regular shift as function of 1. The linear 
extrapolation method consists of looking at e,,,( I )  against 1 /  1 and locating the intercept 
on the O m a x ( l )  axis (or equivalently, locating the value of O m a x ( l )  at 1 / 1 =  0). 

Figure l ( a )  exhibits the specific heat plots h l ( B )  for 1 = 11-20. In figure l ( b ) ,  
6,,,,,(1) is plotted against 111. The strong oscillations do not allow for good linear 
extrapolation like that made in I for the triangular lattice. Based on this plot, we 
estimate e:q- 1.4-1.5. 

Corresponding plots for the cubic lattice are presented in figure 2( a )  ( I  = 1 1 - 1 5 )  
and 2 ( b ) .  The tricritical point is estimated at 6;-  1.5-1.8. 

4. DlogPade analysis 

4.1. Definitions 

After locating the tricritical point e,, we proceed to compute the critical exponents 
and the tricritical value of the growth constant p t .  The latter and the exponent y are 
defined through the asymptotic behaviour of the number of configurations. We antici- 
pate the following behaviour as 1 --* cc: 

u,(e)~r(e)iy(e’-lpJ(e).  ( 5 )  
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Figure 1. ( a )  Specific heat h , ( O ) ,  I =  11-21 for the square lattice. ( b )  h , ( B )  against 1/1 for 
the square lattice. 
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Figure 2. ( a )  Specific heat h , ( e ) ,  I =  11-15  for the simple cubic lattice. ( b )  h , ( B )  against 
1//  for the simple cubic lattice. 
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The amplitude r( e)  and the growth constant p (  0)  are non-universal. For the exponent 
y ( e ) ,  we expect a universal behaviour, namely that it will assume only one of the 
following three values: y (  0) = ysAW for 0 < et, y(  e)  = yt at 0 = 8, and y(  0) = yc in the 
compact phase or 8 > 0,. 

Similarly, the series for (r:( 0)) are expected to behave, as 1 + CO, like 

(r;(e))+ B(e)i*”(”. (6) 

B ( 0 )  is non-universal but v ( e )  is anticipated to assume one of the following three 
values: v( e)  = vSAW for 8 < et, v( e)  = v, for 0 = 8, and v( e) = ( l / d )  for 8 > 8, (compact 
phase). 

4.2. Results for the square lattice 

The extrapolated value of e:q for the 2~ square lattice is between 1.4 and 1.5. The last 
maxima OmaX( l  = 21) is at 8 = 1.55. We present the result from the DlogPadt analysis 
for these values of .9 in table 5. 

Table 5. The exponents y:‘ and the growth paramter F : ~  for different values of 6 on the 
square lattice. 

[ L / M ] / 6  1.4 1.5 1.55 

w 9 1  1.229 (2.967) 1.249 (3.070) 1.234 (3.114) 
[9/81 1.262 (3.010) 1.250 (3.090) 1.231 (3.128) 
P I 9 1  x ( x )  1.276 (2.935) 1.260 (3.023) 
[9/101 1.321 (3.051) 1.267 (3.111) 1.240 (3.142) 
[10/91 1.273 (3.106) 1.252 (3.145) 1.232 (3.167) 
[10/10] 1.169 (3.142) 1.181 (3.191) 1.185 (3.213) 

The results for yt and p, (in parentheses) are given for the highest possible diagonal, 
[ M/M], and off-diagonal, [ M - 1/  MI and [ M /  M - 11 approximants. Defective poles 
are denoted by crosses. We note immediately that the highest approximant [ 10/ 101 
deviates relatively in its results from the rest. This is a consequence of a pair of 
conjugate complex poles close to the real axis between the origin and the physical 
pole. However, it may also be a signature of a crossover to a diflerent behaviour at 
higher order (namely longer trails). We choose to base our estimate for yt on the other 
approximants and predict 

y:‘ = 1.25 f 0.02 

piq = 3.10 * 0.06. 

(7)  

(8) 
(Comparison with the results from the triangular lattice is made in § 5 . )  

The series for (r:( e)) becomes very erratic in the tricritical region for 6 L 1.4. Almost 
all approximants give defective poles. Only two of them have a relatively reasonable 
behaviour: [9/8] yields v = 0.542 (0.997), 0.5285 (0.996) and 0.521 (0.994) (the numbers 
in parentheses are the ‘location’ of critical point which should be at unity exactly) for 
0 = 1.4, 1.5 and 1.55 respectively. For the same values of e, [10/10] gives: 0.628 (0.988), 
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0.544 (0.992) and 0.488 (0.996). From these values we estimate roughly, for the square 
lattice, 

= 0.525 k 0.025. (9) 

4.3. Results for the cubic lattice 

The extrapolated 8: for the cubic lattice is between 1.5 and 1.8 while the last maxima 
is at e,,,( 1 = 15) = 2.0. We therefore give the results from the highest diagonal and 
off-diagonal approximant for value of 8 between 1.5 and 2.0. In table 6, we present 
the figures for yt (p, ) .  We note that there is a very nice convergence for the results of 
the highest approximants around 8 = 1.8. We therefore choose these as our best 
estimates with error bars roughly set by the values at 6 = 1.7 and 1.9 respectively. Our 
best estimates are 

y: = 0.43 k 0.05 

In table 7, the result for yt (and the critical value which is supposed to be precisely 
unity) are given for the same range of 8 and same approximants (note that [7/7] is 
ill behaved). From the other approximants around 8 = 1.8, we predict 

v,' = 0.48 f 0.02. 

Table6. The exponent y: and the growth paramter pr in the vicinity of 0; ofthe cubic lattice. 

[L/M]/B 1.5 1.6 1.7 1.8 1.9 2.0 

[5/6] 0.775 (5.612) 0.738 (5.716) 0.699 (5.832) 0.659 (5.958) 0.619 (6.100) 0.576 (6.247) 
[6/5] 0.533 (5.774) 0.468 (5.919) 0.408 (6.076) 0.354 (6.246) 0.306 (6.429) 0.265 (6.624) 
[6/6] 0.619 (5.718) 0.556 (5.852) 0.493 (6.001) 0.434 (6.162) 0.380 (6.338) 0.331 (6.527) 
[6/7] 0.569 (5.749) 0.518 (5.878) 0.473 (6.017) 0.431 (6.165) 0.394 (6.323) 0.360 (6.491) 
[7/61 0.593 (5.735) 0.532 (5.869) 0.477 (6.013) 0.431 (6.165) 0.398 (6.319) 0.393 (6.458) 
[7/71 0.647 (5.700) 0.568 (5.843) 0.493 (5.998) 0.434 (6.162) 0.381 (6.336) 0.337 (6.520) 

Table 7. The exponent v; (and the critical coupling pr= 1) in the vicinity of 0: for the 
simple cubic lattice. 

vt(P,) 

[L/M]/0  1.5 1.6 1.7 1.8 1.9 2.0 

[5/6] 0.476 (0.982) 0.474 (0.979) 0.472 (0.976) 0.469 (0.972) 0.466 (0.968) 0.461 (0.965) 

[6/6] 0.497 (0.979) 0.497 (0.976) 0.497 (0.972) 0.497 (0.968) 0.496 (0.964) 0.494 (0.960) 
[6/7] 0.491 (0.980) 0.490 (0.977) 0.488 (0.973) 0.486 (0.970) 0.483 (0.966) 0.479 (0.962) 
[7/6] 0.489 (0.980) x ( x ) 0.484 (0.974) 0.479 (0.970) 0.474 (0.967) 0.466 (0.964) 

[6/51 x ( x )  x ( x )  X ( X )  x ( x )  x ( x i  x ( x )  

[7/7] 0.439 (0.915) 0.487 (0.977) 0.400 (0.980) 0.324 (0.983) x ( x ) x ( x )  
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5. Comparisons and conclusions 

In the present paper, we have explored the tricritical behaviour of trails on the square 
and the cubic lattices. The location of these points are extracted from the sharp 
divergences in the specific heat. 

Results for the tricritical exponents in 3~ are derived here for the first time. 
Especially since no perturbative RG fixed point exists, it will be important to derive 
independently these exponents either from exact enumeration on other 3D lattices or 
even better, from large-scale Monte Carlo computations or from finite-size phenomeno- 
logical scaling. 

The results for y: and vF imply for the exponent 7:: 

(13) Y; 7:=2 -y= 1.10*0.15. 
Vt 

This is an unexpectedly large value (especially compared to the situation in 2 ~ ,  see 
below) which implies a strong decay like lrl-’.’ for the ‘correlation’ (sum of all trails 
with end-to-end distance r ) .  

The results for the square lattice may be compared with that of triangular lattice 
derived in I. According to the universality hypothesis, critical exponents should be 
independent of the lattice structure (although doubts may be raised for the present 
case in which the fixed point is non-perturbative and therefore it is not possible to 
‘prove’ universality even arbitrary close to 4 ~ ) .  For the triangular lattice, we found 
(see I)  v:‘=0.52*0.01 and y:r= 1.18*0.02. The agreement for vt is perfect between 
the square and the triangular results. For yt, on the other hand, the triangular result 
is consistently smaller and this discrepancy remains to be resolved by longer series, 
the aforementioned numerical methods, or exact results using conformal invariance 
[lo]. The series on the square lattice are longer ( I  = 21) than those we used to derive 
the value of yt on the triangular lattice ( I  = 15). However, this by no means implies 
that the former yield more reliable results: there are more intersections (for the same 
length) on the triangular lattice and therefore the maximal number of intersections is 
the same ( I  = 7) for both lattices. In addition, the closed-packed triangular lattice is 
known to yield more accurate results since it does not suffer from interference of other 
singularities which leads to oscillation like the ones reported here (figure 2 ( b ) ) .  So 
we regard the triangular result for yt as more plausible. However, even this smallest 
value still implies Tt < 0 in 2~ which is not physical (since the correlation can increase 
as function of distance only within the collapsed phase). So we anticipate the 
asymptotic value of yt will approach its upper limit 2 v, = 1.04 when longer series are 
derived (note that 7 = 0 was argued to be the exact value at the 0 point [lo]). 

We hope all the remaining open questions will stimulate more research, using the 
various methods that have been applied to the investigation of the 0 point, to explore 
this non-perturbative tricritical point of trails. 
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